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ABSTRACT

A climatology of severe thunderstorm (damaging wind and/or hail) and tornadoes 

in the United States has established the location of the areas of highest frequency of 

occurrence. This climatology was attained through analysis of a basic data source, that of 

observed events, which carries many associated biases. Among these biases is the 

requirement that someone be on hand to witness the event no matter what time of the day 

or night, the assumption that the observer had sufficient visibility to see the event clearly, 

and whether there was something available on location to damage. In this study I use an 

alternate database consisting of the number of county severe thunderstorm warnings and 

tornado warnings issued by the National Weather Service, primarily for the 1995-2004 

time window, between the Rocky Mountains and Appalachian Mountains. Because this 

alternative climatology is based upon the much improved technology available using 

Doppler radar, it is believed to have fewer and more quantifiable biases for the spatial 

analysis of severe weather distribution. There are two suspected areas of bias in this 

alternative data source: 1) population density; and 2) distance a county is from the nearest 

radar transmitter. The numbers could also vary spatially according to which Weather 

Service Office (WFO) issued the warning. Regression analysis and statistical tests were 

used to quantify bias to produce a spatial distribution that is complimentary to the 

climatology based upon reported events. The primary goal of the study was to identify 

and quantify the biases, and then develop a spatial pattern that is representative of the 

actual severe weather threat. Results indicate that bias is frequent and highly variable
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according to WFO but could not be accurately quantified. The difference in issuance 

frequency of warnings between those offices which is based on much subjectivity appears 

more dominant than the biases. The resultant distribution of severe thunderstorm 

warnings is similar to one that uses reported events. The distribution of tornado warnings 

remains skewed by the differences between WFOs and is not likely to be representative 

of the actual tornado threat.
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CHAPTER I

INTRODUCTION

Much research has been done to determine the frequency of occurrences and 

spatial distribution of severe thunderstorms (high winds and large hail) and tornadoes in 

the United States. Studies show that the location of highest frequency of occurrence for 

these events extends through the Great Plains region from north-central Texas north- 

northeast toward Omaha, Nebraska, especially if the definition is narrowed to include 

only extreme occurrences. This is the area where cool and/or dry air frequently and 

strongly contrasts with warm and humid air just to the east or south, producing a 

potentially potent environment for developing severe thunderstorms and tornadoes in 

conjunction with related vertical stability factors and winds aloft. Consensus regarding 

this climatology was achieved through analysis of the same basic source of data, that of 

observed events. By far the largest, most reliable and complete data source for severe 

thunderstorms is currently maintained in the United States National Weather Service 

(NWS) verification database and Storm Data program and it is sometimes supplemented 

or compared to records of insurance claims. Brooks et al.'s (2003a) study of the spatial 

distribution of the data is currently the most respected in regards to the location of the 

highest severe thunderstorm and tornado threat. But the distribution of severe weather 

events has varied dramatically over the years, especially since 1980 as the numbers of 

reported events have increased and the reporting process has become more efficient.

1
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The severe thunderstorm and tornado climatology is based on reports of property 

or crop damage, direct instrument measurements, or by personal injury or loss of life. It 

contains a myriad of biases, most notably those resulting from the effects of population 

density and its associated and resultant infrastructure variations. After all, if no one is on 

location to observe the event how would it be reported? Other biases in the data include 

those associated with nighttime occurrence (low visibility and the period when most 

people sleep), unequal or insufficient training for weather observers and subjectivity in 

reports that results, how proactive the staff in a local Weather Forecast Office (WFO) 

might be in soliciting reports, varying building codes, and associated subjectivity, in 

damage assessment. In order to improve our understanding of where severe 

thunderstorms and tornadoes occur, researchers have removed or compensated for known 

biases in the data (Ray el al., 2003), accepted the climatology, mindful of the inherent 

biases (Doswell and Burgess, 1988), or filtered the data to exclude questionable entries 

(Kelly etal., 1978).

After deciding which way to treat this observational data, one must decide what 

must be done to see accurate spatial patterns in the data. Many methods in forming 

patterns from the data normally require so much smoothing of data that detail at a level as 

small as a county is lost (Brooks el al., 2003a). Filling in large gaps between reports with 

estimates require assumptions based on what might be reported if those areas were 

populated and someday might be, a risky way to determine hazard threat. Not only is this 

database of reports suspect in many ways, it is simply undesirable to look for another way 

to study it that has not already been done. I sought an alternate database that was 

substantially different and had fewer biases, especially regarding population density. The

2
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Modernization and Restructuring (MAR) of the NWS included a joint effort by the 

Departments of Commerce, Defense, and Transportation to develop a Doppler weather 

radar network that was deployed in the 1990s. NWS Meteorologists who use these radars 

are required to issue severe weather warnings throughout the United States, 24 hours a 

day and 7 days a week, whether or not anyone will notice the inclement weather or be 

hurt by it, thus removing the potential population and nighttime biases. These radars 

were designed with much improved technology to detect high wind (including those in 

tornadoes) and hail, with better range capability compared to the previous radar system.

A complete database of reported events and issued warnings from 1986 through 20Q4 

between the Rocky Mountains and Appalachian Mountains, and extending through 

Florida, was used for this study of severe weather. This database is regarded to have no 

biases due to nighttime factors or possible damage, and no bias associated with gathering 

severe weather reports.

In this study I will determine the extent of biases in warnings and attempt to 

remove them. 1 will then develop a spatial pattern that may be more representative of the 

actual severe weather threat, and is complimentary to one derived from a database of 

reported events. Specific questions to answer include: 1) is there bias associated with 

either population density or with a storm’s distance from the radar?; 2) do individual 

WFOs show differences in the number of issued warnings compared to neighboring 

offices, and could these differences be interpreted as a bias?; and 3) what is the spatial 

pattern of severe weather based on this new source, and how does it compare to earlier 

climatology?

3
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Although the author of this study is an employee of the National Weather Service 

this study has not been authorized by this employer. The analysis and data interpretation 

included herein are those of the author and do not necessarily represent those of the 

National Weather Service.
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CHAPTER II

LITERATURE REVIEW

The National Weather Service and Severe Local Storms 

The NWS is charged with the task of issuing official public warnings concerning 

hazardous weather in the United States, including those for severe thunderstorms and 

tornadoes, floods and flash floods, high winds and various winter hazards (NWS 

Directive NWSI 10-511, 2003). Official NWS definitions of severe thunderstorms and 

tornadoes in the United States, sometimes referred to as severe local storms, have 

remained constant since 1970 (Galway, 1989). A WFO issues a severe thunderstorm 

warning when radar or satellite data indicate that such a storm exists and/or reliable 

spotter reports are received of wind gusts equal to or in excess of 50 knots (58 mph) 

and/or hail of at least 0.75 inch (penny) diameter or larger. A tornado warning is 

similarly issued when radar or satellite is suggestive of a tornado and/or reliable spotter 

reports of a tornado are received (NWS Directive NWSI 10-511,2003).

Using an approach sometimes referred to as '‘ready, set, go," the NWS begins to 

advise the public, media, and state and county emergency managers, law enforcement 

personnel, and the public with a convective outlook. This first step is performed by the 

Storm Prediction Center (SPC) in Norman, OK, and is issued up to three days in advance 

of suspected severe weather across the continental United States (NWS Directive NWSI 

10-512, 2005). As atmospheric conditions become favorable for severe thunderstorms

5
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and/or hail of at least 0.75 inch (penny) diameter or larger. A tornado warning is 

similarly issued when radar or satellite is suggestive of a tornado and/or reliable spotter 

reports of a tornado are received (NWS Directive NWSI 10-511,2003).

Using an approach sometimes referred to as “ready, set, go,” the NWS begins to 

advise the public, media, and state and county emergency managers, law enforcement 

personnel, and the public with a convective outlook. This first step is performed by the 

Storm Prediction Center (SPC) in Norman, Oklahoma, and is issued up to three days in 

advance of suspected severe weather across the continental United States (NWS 

Directive NWSI 10-512, 2005). As atmospheric conditions become favorable for severe 

thunderstorms and/or tornadoes to develop, the SPC usually issues either a severe
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thunderstorm watch or tornado watch for the threatened area, normally valid for 6 hours 

or less. The final stage is when the local NWS office issues a severe thunderstorm 

warning or tornado warning when the phenomenon is believed to exist or be imminent. 

The purpose of this warning is to provide the go ahead for the public, school and 

emergency managers to take final actions necessary to protect life and property, and to 

warn the public. It is valid for one hour or less and usually for a county or several parts 

of counties, depending on the county size and storm movement. Among the desired 

responses to an issued warning include people seeking sturdy shelter, storm spotters 

watching for potentially damaging weather, law enforcement turning more of their 

attention to such a threat, and hospitals becoming alerted to potential injuries.

Warning verification in the NWS has gone hand-in-hand with its SKYWARN 

program. These volunteer weather spotters collaborate with the NWS in helping it locate 

severe weather which in turn helps warn other people in its path (Doswell et al., 1999). 

Other methods of verification in the 1950s through 1980s included official weather 

observers at airports and on-site damage assessment. Remote wind sensors have, since 

the 1980s, taken a larger role in warning verification. But weather spotters, public 

reports, and damage to crops and other property are still the primary means of verifying 

occurrences.

Causes and Climatology

Severe thunderstorms and tornadoes happen over much of Earth’s surface. 

Primary causes of severe thunderstorms include large instability in the atmosphere, 

having warm and moist air within the surface boundary layer or just above it in the case

7
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non-tomadic severe thunderstorms. however, has lagged somewhat behind research done 

on tomadic storms. While the SPC maintains a database for both types of storms, the 

National Severe Storms Laboratory (NSSL) in Norman. OK (co-located with SPC) has 

been directed to develop such a climatology. This database w-as used to produce Figures 

1-3 (http://wvvAv.nssl.noaa.gov/hazard) in a spatial format for the 'Total" threat (the mean 

number of days per year with one or more events within 25 miles of a point) for any 

sev ere thunderstorm wind (58 mph or more), severe hail (0.75 inch in diameter or larger), 

or tornado as defined for NWS warning o f criteria (NWS Directive NWSI 10-512, 2005).

Figure 1. Severe Thunderstorm Wind Days per Year, 1980-1999).

8
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Figure 2. Severe Thunderstorm Hail Days per Year. 1980-1999).

Figure 3. Tornado Days per Year, 1980-1999).

9
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Problems for Climatologies Based on Past Events

A climatology based on past events has numerous limitations. A large grid size 

(80 km either side of a point or about 5 times larger than an average sized county in the 

central U.S.) was used in Figure 1, which resulted in poor spatial resolution. As in all 

climatologies based on recorded events, there are many other inherent problems and one 

must settle on an acceptable balance. Higher population will normally result in a higher 

probability of an event being reported (Kelly et al., 1985), but we may not then infer that 

we can accurately extrapolate how many reports would have been received had there 

been more population. Other associated factors such as variable highway distribution and 

amount of urbanization, some people having (or not having) available communication, 

distance to a reporting station, day of the week, activity level of the people on location, 

and education of the populous complicate the matter. The net result of these 

demographic factors on the data is quite complex and most likely nonlinear (Kelly et al., 

1985). Additional problems include low visibility at night, blockage of visibility by 

terrain, trees and low clouds (especially in the eastern U.S.), lack of appropriate 

measuring devices, lack of a local spotter network, incorrectly identified causes, incorrect 

identification of a tornado, and subjectivity of storm damage surveys. Some storms or 

tornadoes are properly observed but are not reported since the observer felt no 

responsibility to report it, or did not know it should be reported (Kelly et al., 1985). 

Efforts have been made to adjust the numbers of known reports for some of these 

limitations (Ray et al., 2003), but may easily introduce a new bias when choosing which 

of those factors not to consider.

10
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The number reports of hail of at least 0.75 inch diameter rose from an annual 

average of 1,100 in the late 1970s to almost 2,500 in the early 1980s (Schaefer et al., 

2004). Reports included in Storm Data, the national database of severe events, have 

increased by nearly an order of magnitude during the last 30 years due, in part, to 

implementation of the national warning verification program, increased training for 

trained storm spotters, deployment of the WSR-88D radar network, population increases 

and associated redistribution, and an overall increased awareness of weather hazards by 

media and government agencies (Weiss et a l, 2004). Hail climatologies have been 

developed at all scales from city to national levels and is usually based on the use of 

either Storm Data, crop-hail insurance losses or property damage records (Changnon, 

1977).

Concannon et al. (2000) state that if the climatology of tornadoes is redefined 

with strong criteria then the data are more reliable since these tornadoes are larger, more 

visible, have longer damage paths and cause the most damage. A strong tornado is 

defined as one with wind speeds of at least 113 mph, or F2 on the Fujita scale (Fujita, 

1987; de Villiers, 1997). The same may be said about severe thunderstorms since 

stronger wind and larger hail is less likely to occur unnoticed. Strong severe 

thunderstorms cause wind of at least 65 knots (75 mph) and/or hail in excess of 2 inches 

in diameter. These events are less likely to occur without leaving a record of structural or 

crop damage or loss of life (Kelly et al., 1985; Concannon et al., 2000). Better definition 

and confidence in such a climatology is possible, but using such narrow criteria results in 

ignoring the majority of potentially severe and damaging occurrences. For example, 

tornadoes classified as strong comprise only 30% of the total number, and violent ones

11
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(>207 mph, F4 or stronger) only 2% (Concannon el al., 2000). Wind and hail reports in 

excess of these criteria have comprised only 30% and 18% respectively (Kelly et al., 

1985). Thus, in order to have high confidence in our climatology dataset we might have 

to not consider more than two-thirds of those events that are considered potentially 

damaging.

Population Bias

Population density is one possible bias to account for when considering a 

climatology of reported tornadoes or other severe events. Newark (1983) estimated that a 

minimum threshold of 1.5 persons/km2 is necessary to observe and report more than half 

of actual tornadoes. King (1997) concurred that this minimum threshold would be less 

than 6.0 persons/km2. That study concluded that the effect of high population density 

may be removed by excluding the population of all incorporated cities and towns 

(generally more than 1.000 persons) in this southwestern Ontario region, using only rural 

population and combining townships of similar population density. This would be an 

extremely difficult task in a much larger or complex area. Other studies support a causal 

relationship between population density and number of tornado reports (Changnon, 1982; 

Snider, 1977). While they fmd that the signal toward population bias is strong, Elsom and 

Meaden (1982) found that metropolitan London experiences fewer tornadoes than its 

suburbs. However, Schaefer and Galway (1982) found that the effect of population 

density is surprisingly small. These studies suggest what population density might result 

in a significant percentage of tornadoes to be reported, but a population density will be 

sought in this study of warnings that would result in the inclusion of nearly all tornadoes.

12
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Distance Bias

Ideally, weather radars would sense conditions as close to the ground as possible. 

A funnel cloud or a 100 mph wind that is aloft is not usually perceived by people on the 

ground as particularly dangerous to them unless it reaches the ground. But a radar beam 

that is tangential to the Earth’s surface at the radar location (0° elevation angle) will 

largely sense “ground clutter” (trees, buildings, etc.) instead of the weather phenomenon 

of interest. The lowest elevation angle for the center of a radar beam employed by NWS 

radars (the degree to which a beam is tilted away from a plane tangential to the Earth’s 

surface) is 0.5°. This tilt is necessary to lift the beam away from too much contact with 

ground based objects that might interfere with the radar’s ability to remotely sense a 

thunderstorm. This elevated angle causes the beam to increase in height with greater 

distance from the transmitter. This problem is aggravated by the natural curvature of the 

Earth, which curves downward relative to the tangential plane with increasing distance.

At a distance of 60 km at 0.5° the radar beam center is about 600 m above ground level, 

at 107 km (the mean distance of the counties studied here) it is 1450 m above the radar, 

or higher than the visible part of most tornadoes. Beam width is another factor that limits 

severe weather detection through poorer resolution of small-scale flows (like tornadoes) 

at greater distances since linear beam width is a function of angular beam width and 

range from the radar. The Doppler radar has a beam width of 1.0°, which limits its 

practical range limit for all but the widest of tornadoes to 60 km (Vasiloff, 2001). So 

with increasing distance from the radar comes greater uncertainty, meaning that visual 

sightings of tornadoes become even more critical. Damaging wind and large hail from 

severe thunderstorms are also hard to detect at greater distances since the radar can “see”

13
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less detail in fewer slices through a thunderstorm at these ranges. Figure 4 shows that 

while ten slices of radar data can be obtained through a thunderstorm 40 nautical miles 

(nmi) from the radar that has a top of 45 thousand feet above the radar, only three slices 

are possible through a similar storm at 120 nmi.

Number ot Scans 14 Beam Width: 0.95 degrees 

19.5 16 7 14 0 12 0 10 0 8 70 7 50 6.20 5 25

Figure 5-1
Prcvipiiation Severe W eather Scan 

Volume < overage Pattern  11

Figure 4. Volume Coverage Pattern (VCP) 11, from University Center for Atmospheric 
Research (UCAR).

Possible Ground Effects

Many studies address how increased wind shear and storm relative helicity 

(SRH), in addition to other parameters, increase the likelihood of tornadoes (Davies- 

Jones el al., 1990; Cortinas and Stensrud, 1994, Stensrud el al., 1997). A few suggest 

that the increasing roughness of the ground and objects on it may be a factor for 

decreasing the frequency of tornadoes reaching the ground (Dessens, 1972; Snider, 1977)

14
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by changing the low level wind shear that contributes to rotation and updraft in a 

thunderstorm. Pryor and Kurzhal (1997) used land use categories from the U.S. 

Geological Survey (USGS) and found that urban and forested areas had the greatest 

surface roughness in Indiana, while the greatest frequency of tornadoes was determined 

to be on the relatively treeless and flat plains area of the state. Dessens (1972) found in 

laboratory simulations that with increased roughness of the surface vertical speed shear 

decreased and turbulence increased in the lowest layer. He did not, however, address the 

issue of possible directional wind shear.

Some studies use classification of land use/land cover to determine variations in 

diurnal temperature range (Gallo el al., 1996). Daily maximum temperatures were 

determined to be lower when a forested region is converted to cropland (Bonan, 2001) 

(though it increased low level moisture through evapotranspiration). This could also 

affect temperature contrast across boundary layer environments or change stability 

factors. Other studies reflect on increased convective precipitation activity over various 

ground surfaces (including cropland, or irrigated crops) that may artificially change low 

level moisture or heat thus changing air mass contrast across boundaries (Segal et al., 

1989; 1995). Also, convection was found to increase just downstream from urban 

environments larger than 3 million in population (Changnon, 2001). Oklahoma’s winter 

wheat belt was found to modify the surface boundary layer at the mesoscale level, with 

anomalously high dew points during the growing season (November and April) and 

anomalously warm air temperature in July after harvest (McPherson, 2004).
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New Technology

Through the 1980s detection of severe local storms had been frequently hampered 

by using radars based on 1940s and 1950s technology. In 1988 the U.S. Congress 

authorized the modernization and restructuring of the NWS, which included a new 

network of Doppler radars and restructuring of weather service offices with updated 

equipment. In 1994, the Assistant Administrator for Weather Services of the National 

Oceanic and Atmospheric Administration (NOAA) testified before the U.S. Congress for 

the continued modernization of the NWS and that tomado warnings using the older 

radars were usually being issued only when visual sightings had been reported (United 

States, 1994). This next generation radar (NEXRAD, later referred to as WSR-88D) 

network is a joint agency program of the National Weather Service (NWS), the Federal 

Aviation Administration (FAA), and Department of Defense (DOD). The deployment of 

these radars took the majority of the 1990s, but the last of 166 was deployed in 1997 

(Crum et al., 1998). The assistant administrator also made the following comments in 

favor their deployment: “Historically, severe weather events as a whole have had a bias 

toward areas of larger population. This was related to the number and aggressiveness of 

trained spotter networks available to provide ground truth reports of severe weather.” and 

“With the introduction of the WSR-88D. we feel that there is no population bias where 

the radar is being used operationally.” While being questioned on an extra radar site 

being necessary at Huntsville, AL, and the possibility of a range bias owing to this area 

being too far from a radar without one, he stated that Huntsville “lies well within Doppler 

range of the planned sites near Nashville, about 103 miles north; Columbus AFB, about 

114 miles southwest; Birmingham, about 109 miles south southwest, and Fort Campbell,
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about 140 miles north" (United States. 1994). For detection of severe local storms for 

warning purposes, radar data are needed as close to the ground as possible to infer what 

weather events may be occurring on the ground. But Maddox el al. (2002) determined 

that availability of radar data to support the warning mission of the NWS is very limited 

below 2 km above ground level (AGL) over much of the contiguous United States and is 

worse below 1 km AGL (Figure 5).

Figure 5. WSR-88D Effective Radar Coverage at a I Ieight of 1 km AGL, from Zhang, 
J. and the Cooperative Institute for Mesoscale Meteorological Studies 
(http://www.cimms.ou.edu/~jzhang/radcov/US_lamb.radcov_lkmagl.jpg).

Verification of Warnings

The NWS uses several indices to verity their warnings and gage success in 

issuing the optimal number, location, and type of each kind of warning (NWS Directive 

10-1601, 2003). Probability of Detection (POD) is a numerical fraction between 0 and 1
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calculated by dividing the number of correctly forecast events (A) by the number of 

actual events (A + B), where B is the number of events observed but not forecast:

POD = A / (A + B).

False Alarm Ratio (FAR) is a numerical fraction between 0 and 1 equal to the 

number of false alarm warnings (C) divided by the total number of warnings (A + C):

FAR = C / (A + C).

The Critical Success Index (CSI) is the ratio of correct warnings (A) to the 

number of events (A + B) plus the number of incorrect warnings (C), with the best 

possible score being 1:

CSI = A / (A + B + C).

Every WFO seeks to correctly identify and then warn for the maximum number of 

severe thunderstorms in their area of responsibility (POD) while not over-warning (FAR), 

which may lead to ambivalence by the public and possible loss of economic productivity. 

A high CSI achieves the dual objectives of correctly warning for all actual severe events 

and not over-warning for incorrect events. Though it is not expressed explicitly, it is 

implied in the NWS mission statement and operations manual that a high POD is sought 

even if the price is a higher FAR than desired. The priorities as outlined in the NWS 

operations manual are: 1) protection of life; 2) protection of property; and 

3) promotion of the Nation’s welfare and economy (NWS Operations Manual, 2006).

CSI can be somewhat misleading as the best measure of success since it implies that high 

POD is as equally desired by the NWS as low FAR.

It is very likely that there is no “correct” number of warnings that a WFO should 

issue even though the definitions of severe thunderstorms and tornadoes are constant
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throughout the nation. People typically respond to issued warnings differently by region. 

Sims and Baumann (1972) indicated that people in Alabama were more likely than 

people in Illinois to die from a tornado even if they had been adequately warned, while 

other factors were kept constant. The Alabama residents were less likely than those in 

Illinois to respond to a warning by seeking shelter because they believed that “it would be 

their time” if it resulted in their death. People in Illinois tended more to believe that their 

destinies were in their own hands and would prepare for and then respond to warnings by 

seeking shelter. Thus, the warning itself carries a different meaning depending on the 

user. Perhaps false alarms also carry greater significance in one region versus another, 

leading to greater justified caution by warning meteorologists to evaluate the 

consequences of a false alarm. This may lead to waiting until they feel more confident 

about the threat, and fewer warnings. Roulston and Smith (2004) point out that when 

forecasters issue nonprobabilistic forecasts (binary), such as the severe thunderstorm and 

tornado warnings, they also make implicit assumptions about the cost to loss ratios and 

the tolerance of the users. They conclude that a higher false alarm ratio may be 

acceptable in low cost to loss ratios, relatively high frequency events, and for users who 

have a moderate intolerance to false alarms, factors not considered in FAR scores within 

the NWS.

In still other regions the definition of a thunderstorm that is actually severe may 

be different. For example, a storm that drops 0.25 inch diameter hail but accumulating 

five inches deep may not be more than an inconvenience in a forested or urban area, and 

does not meet criteria for issuance of a warning. But the same occurrence on a field of 

crops may prove disastrous. Verification as practiced by the NWS requires exact criteria

19



www.manaraa.com

to be met, yet incorporates much subjectivity over whefy were met (i_e_ a visual 

estimation that the wind gust was 58 mph and not 57 mj
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CHAPTER III

STUDY AREA

The area in the United States between the Rocky Mountains to the Appalachian 

Mountains and extending from the border of Canada to the Gulf of Mexico was selected 

for this study (Figure 6). It is the region in the world most affected by severe 

thunderstorms, contains the most complete data set in the world for severe weather 

events, and possesses relatively even terrain. The study area extends south to the Rio 

Grande Valley and through Florida, and north to the Canadian international border.

Nearly bisecting this area is the Mississippi River from which terrain gradually rises 

towards the north, east, and west directions. Exceptions include the Ozark Mountains, 

primarily in Arkansas and southern Missouri, with only a few peaks exceeding 600 m, 

and the Black Hills which rise 1200 m from the surrounding plains. The High Plains 

gradually rise westward towards the Rocky Mountains and eventually approach 2000 m 

before reaching the foothills, but there is isolated higher terrain on these plains that may 

contribute to localized maxima in severe weather. On the eastern side are the 

Appalachian Mountains that generally rise to a ridge averaging almost 1000 m with a few 

peaks exceeding 2000 m. A major water body affecting this area is the Gulf of Mexico, 

which is the region’s most significant source of moisture for convective storms. The 

relatively cool water of the Great Lakes usually helps to cool air in the boundary layer 

near and immediately downwind of the lakes, which helps to moderate storms to less than 

a severe level.
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Figure 6. Topographic Map of the Study Area.
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Due to the results of initial mapping efforts for the spatial distribution of 

warnings, the study area was expanded to include Georgia and Florida. It was later 

decided to not extend northward along the East Coast due to time constraints and 

increasing population density tending to skew the data making regression more difficult. 

Moreover, the study area was not extended into the western states due to extremely large 

counties there and highly variable topography tending to dominate the spatial pattern.

The study area comprises 2,267 counties in 29 states. Figure 7 shows the county warning 

areas (CWA) for 63 WFOs completely contained in this region, while including parts of 

13 others. The CWAs are labeled with their responsible WFO (see Appendix A.for a 

complete listing of WFO 3-letter identifiers). However, the counties within the CWA of 

WFO Huntsville, Alabama (HUN), which did not open until 2003, were treated as 

belonging to Nashville, Tennessee (OHX, 3 counties) and Birmingham, Alabama (BMX, 

11 counties), the offices to which they belonged before the Huntsville office opened. 

Those were the offices with responsibility for the counties for the majority of the study 

period. Also, the three counties belonging to the Weather Service Office in Williston, 

North Dakota were treated as belonging to Bismarck, North Dakota (BIS).
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Figure 7. Area o f Study and County Warnings Areas (CWA).
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CHAPTER IV

DATA

Initial collection of data for the quantity of reported severe weather events and 

numbers of issued warnings was done by accessing the NWS verification website and 

manually copying output numbers (https://verification.nws.noaa.gov). At the time of 

this writing, access to this web site was restricted due to its technological inability to 

handle the expected traffic volume and required a password. Severe thunderstorm 

warnings were compiled into one data set while tornado warnings were collected into a 

second. A thunderstorm containing a tornado is also regarded to be a severe 

thunderstorm and has potential to produce damaging wind and large hail, so the tornado 

warning data are a subset of the larger severe thunderstorm warning data set. Recorded 

'  information included the number of events and warnings in each county from 1986-2004 

and also for the 1995-2004 period. County scores for probability of detection (POD), 

false alarm ratio (FAR) and critical success index (CSI) were recorded from the website 

before and since the commission year of the radar closest to the county. The WSR-88D 

radar network became more than half commissioned by the end of 1995 and was 

completed by 1997. Since the radars were in unofficial use even before their commission 

dates, for the study of spatial distribution of the number of warnings the network was 

treated as complete in 1995. The distance each county is from the nearest radar was 

determined manually by using the NWS Advanced Weather Interactive Processing 

System (AWIPS) computer system. Radar names, locations, and their commission dates
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were copied from the NWS Operations Support Facility web site 

(http://www.roc.noaa.gov). WFO locations and their county assignments were accessed 

through NWS Directives at the NWS website (http://wAvw.nws.noaa.gov/directives).

County data regarding population, county federal information processing standard 

(FIPS) codes, and county size in square miles were recorded directly from the 2000 U.S. 

Census available at the U.S. Census Bureau web site (http://www.census.goy). All data 

was converted to metric units.

This research focuses primarily on the 1995-2004 time period during which there 

were 213,761 severe thunderstorm warnings and 30,639 tornado warnings, for 244,400 

total warnings issued in the 2,267 counties of interest. Five primary variables were used 

in analysis: 1) number of severe thunderstorm warnings issued in each county, divided by 

aerial county size (dependent variable); 2) number of tornado warnings issued in each 

county, divided by aerial county size (dependent); 3) population density in each county 

(independent); 4) distance the center of a county is from the nearest WSR-88D radar after 

completion of the network (independent); and 5) the 75 WFOs issuing the warnings 

(independent). Table 1 shows the descriptive statistics for the raw data for the four 

quantitative variables.

Among the assumptions of regression analysis are that the variables have a 

normal distribution while having a linear relationship between them. Failure of the 

linearity assumption results in multicollinear variables which is when the effects of 

supposedly independent variables cannot be disentangled. The population density 

variable is highly skewed while being extremely leptokurtic which caused it to be 

untransformable to a normal distribution. The distance variable is quite platykurtic and
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Table 1. Descriptive Statistics of Variables.
Severe

Thunderstorm
Warnings

Tornado
Warnings

Population
Density

Distance to 
Radar

Counties (n) 2267 2267 2267 2267
Mean 65.23 7.86 44.85 107.00
Standard Deviation 35.67 5.92 128.72 48.57
Standard Error 0.75 0.12 2.70 1.02
C.I. of Mean 1.47 0.24 5.30 2.00
Range 553.62 56.27 2195.34 325.9
Max 554.53 56.27 2195.38 326.8
Min 0.91 0.00 0.04 1.85
25% 41.49 3.52 6.54 72.23
Median 60.49 6.61 14.67 105.56
75% 82.39 10.68 33.20 138.90
Skew 2.46 1.51 8.69 0.33
Kurtosis 20.85 4.57 102.31 0.09
K. S Distance 0.07 0.09 0.36 0.03
Sum 147878.0 17826.6 101686.0 242563.8
Sum of Squares 12530198.3 219521.3 42105948.9 31298988.8

also very difficult to transform. The two dependent variables could be transformed 

to a normal distribution only if the a level reduced to 0.01. Deletion of outliers and 

modification of some of the more extreme values was examined but did not result in

normality for any variable. Doing so appeared to cause a critical loss of explainable

variance since some of the extremely high values in the dependent variables were paired 

with extremely high values in the independent variables. Since regression is more robust 

to violations of assumptions especially in large data sets (Tate, 1992; Mertler and 

Vannatta, 2005), regression was tried anyway but only R2 values of less than 0.12 were 

attainable for the severe thunderstorm warning data set and 0.03 for the tornado warning 

set, both of which failed constant variance tests.

Better success was achieved if the sets were broken into smaller groups based on 

CWA, or groups of several CWAs. The dependent variables were then transformable to 

normal (a=0.01) by using a square root transform function. Exceptions included the
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severe set at Pittsburgh, Pennsylvania (PBZ), where a reciprocal transform function was 

required, and for the combined CWAs of St. Louis, Missouri (LSX) and Central Illinois, 

Illinois (ILX), where a logarithmic transform was used. Population density remained 

untransformable even at the more local level so both independent variables were accepted 

for regression as they were and the robust quality of regression was relied upon. But 

passing the normality and constant variance tests remained included in the requirements 

to determine which equations explain the variance.

The independent variables (population density and distance from radar) are 

somewhat correlated themselves, which may reduce the potential R values obtainable 

through regression. Figure 8 and the exponential regression equation (R2=0.148) 

calculated using Excel show that radars tend to be located closer to population centers 

(with the scale of population density having been truncated above 100 persons/km2). The 

Spearman Rank Order Correlation value for the relationship between these two variables 

is 0.356. However, mindful of this tendency, no county data was flagged by SigmaStat 

as being multicollinear, so no adjustments were made regarding this issue.

100

f 25
0

O 30 60 90 120 150 180 210 240 270 300
D is ta n ce  fro m  C oun ty  C e n tro id  to  N e a re s t R a d a r (km )

Figure 8. Scatterplot of County Population Density vs. County Distance From the 
Nearest Radar.
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CHAPTER V

METHODS

Microsoft Excel was used extensively for data maintenance and generation of 

analysis results through this program’s ability to use arithmetic equations, its ability to 

generate some of the initial regression analysis, and its compatibility for copying data 

into G1S software. All raw numbers of events and warnings recorded in individual 

counties were divided by their aerial county size to correlate them and then multiplied by 

1,000 to convert their values to a per 1,000 km2 basis for easier interpretation. These 

became the dependent variables.

Quality control of the data was done using several computer programs. Excel was 

used to total the numbers of events and warnings in each state from the verification 

website, and then data were checked to ensure that the resulting totals matched those on 

the web site. MapViewer (5.0) and ArcView G1S (9.0) were used to quality control radar 

names and locations, WFO names and locations, and distance from the nearest radar by 

using FIPS codes to plot them on a generated map to verify their correct location 

assignments. Maps were generated in ArcView GIS.

To answer the first primary research question of potential population bias and 

distance from radar bias, regression analysis was used to partition their different aspects 

and determine the degree of dominance for each in prediction of the dependent variables. 

The null hypothesis was that there is no difference (Ho: pi = ^2), or that regression 

equations involving the two independent variables do not significantly predict where
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warnings are issued. SigmaStat statistical software was used to transform data, derive 

regression equations, and conduct t-tests and Mann-Whitney tests. This software utilizes 

the Kolmogorov-Smimov test to determine normality of the data. Regression was 

performed by deriving the best equation for each CWA(s), whether it was linear, 

multiple-linear, non-linear, logarithmic, polynomial, or exponential. Determination of 

which regression equation to use was done by determining which solution achieved the 

highest R2(adj) score while passing the normality and constant variance tests, reaching a 

p < 0.05 value in the ANOVA F-test, and attaining a power rating > 0.8 (Agresti and 

Finlay, 1997; Mertler and Vannatta, 2005). If no equation was found that met all of these 

criteria for a given WFO(s) then no equation was used in adjustment of its dependent 

variables; and bias was assumed to be immeasurable. The successful equations show 

how much the two variables contribute to the variance of warning distribution. It was 

thought that in most cases the majority of variance would be explainable by natural 

atmospheric conditions and any local topographic anomalies (such as more stability 

available very near the Great Lakes thus leading to fewer severe storms there). Very high 

R and R2(adj) scores were not expected.

Regression and t-tests were the statistical tests of choice due to their robust 

qualities in dealing with data that in some instances could not pass the normality or 

constant variance tests. Regression was also chosen for its ability to quantify relative 

influence by independent variables.

When deriving equations for individual WFOs, usually both the population 

density and distance independent variables were included. But, using one variable 

produced a better score in some cases. Roughly a 15:1 ratio (Stevens, 1992) was used
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between the minimum number of counties included and the number of independent 

variables utilized. Using that ratio, it was possible to derive an individual equation for 

only 32 of the 75 CWAs. Other CWAs were combined with others in close proximity to 

increase the number of counties (n) used in regression, especially if scores improved 

when doing so or when it helped to normalize input data. The 75 CWAs were then 

reduced to 49 groups, each with their own regression equation and scores (see Appendix 

B for WFO groupings, equation lists with coefficients, F-test results and power ratings).

After regression was complete, the actual values of population density and 

distance from radar were removed from the equation of each county, and replaced with 

constants. This was intended to produce a spatial pattern that would be equally correlated 

across this large area with no differences due to these variables. Studies show that 

population densities between 1.5 and 6.0 persons/km2 would result in at least half of all 

tornadoes being reported (New'ark, 1983; King, 1997). While this article studies 

warnings rather than reports, it stands to reason that a significantly higher population 

density would result in nearly all tornadoes being reported, and eventually that value flat­

lining at some maximum figure. Figures 9 and 10 are scatter plots of the dependent 

variables versus the independent variables with regression lines computed using Excel. 

Each of the dependent variables tends to rise logarithmically with population density but 

decrease linearly according to distance.

For this study the population density value chosen to substitute in regression 

equations in both data sets was 44.9 persons/km2. This value was chosen because 

warnings begin to flat-line above this level and because it is the mean observed value for 

all counties. Using higher values sometimes resulted in over-inflation of numbers when
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Figure 9. Regression Trends for the Number of County Severe Thunderstorm Warnings 
Issued per 1,000 km" vs. Population Density of the County and its Distance from Radar.
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Figure 10. Regression Trends for the Number of County Tornado Warnings Issued per 
1,000 km" vs. Population Density o f the County and its Distance front Radar.
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either population density input values used to derive an equation were very much 

different than this value or a high order polynomial equation fit the data best.

For distance from radar, Vasiloff (2001) stated that tornado algorithms are not 

effective beyond 60 km for detecting all but the largest tornadoes. However, somewhat 

greater distance from the radar is sometimes useful for sensing higher levels of a 

thunderstorm to maximize the number of useful slices the radar can obtain in a storm. 

With these thoughts in mind, Figures 9 and 10 show that a trade-off is made to select 60 

km to use as the best distance to substitute for actual values in the regression equations.

Figure 11 is a graphic example of how the regression and adjustment were done 

for the number of tornado warnings in Golden Valley County, North Dakota. A scatter 

plot was created for the counties in the Bismarck (BIS) area, with the best regression line 

placed over it (in this case a linear regression line with the only independent variable 

being distance from radar). The square root of the actual value per 1,000 km2 was 1.5 

with a distance from radar of 266.7 km. Moving along the regression line, the distance 

was reduced to 60 km while holding the residual constant. A new value of 2.63 was then 

reached and squared again to remove the effect of the transform function. This results in 

a new value of 6.92 tornado warnings per 1,000 km2.

A similar regression procedure involving both independent variables was done for 

every county in each data set. Once regression is finished it is expected that the number 

of county warnings per 1,000 km2 at each data point would reflect the number that might 

have been issued if every county had a population density of 44.9 persons/km2 and its 

county centroid been 60 km from the radar station.
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Figure 11. Example of how an adjustment was made to the number tornado warnings in Golden Valley County, ND 
through Regression.

6. Golden Valley's warning 
value is adjusted from its 
actual value of 1.50 to 2.63.

4. Distance from the nearest radar 
for Golden Valley County is adjusted 
from the actual value (266.7 km) 
to the chosen constant (60 km).

Tlesidual stays the same.

1. Actual Value for 
Golden Valley County =1.50.

2. Linear Regression Line.

3. Predicted value from 
regression = 0.67 for 
Golden Valley 
County.

Sqrt (Tornado Warnings) =  -0.0053 (Dist) + 2.1148 R — 0.4479
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After much of the population density and distance biases have been removed, it 

seems likely that the remaining variance not due to spatial differences in atmospheric or 

topographic conditions would be the result of subjective practices by meteorologists in 

WFOs. Such differences between CWAs could not be labelled as a “bias” even if the 

numbers of one CWA were vastly different from the other CWAs around it. As 

discussed earlier, the dynamics of warning responses are too variable according to the 

user. Determination of a “correct” number of warnings that should have been issued 

must involve a great deal of subjective judgment. It is for the issuers of those warnings to 

determine whether they should change how frequently to “pull the trigger” in the warning 

process and warn to obtain a maximum effective response from their users.

The second primary research question, the possibility of significant differences 

between quantities of warnings between adjacent WFOs/CWAs (categorical independent 

variable), was addressed individually for each CWA. To the individual warning 

meteorologist it is useful to know if their office issues a significantly different number of 

warnings than its neighbors, and by how much. Since these data are at a nominal level 

they were not included in regression, but done afterward using t-tests (Mann-Whitney 

tests when either the normality or equal variance tests failed). In these tests, after any 

identified biases had been removed, values from all available counties of a CWA were 

compared against all counties contained within all CWAs adjacent (sharing a common 

border) to the CWA being tested. Using the Eastern North Dakota WFO/CWA as an 

example (Figure 12), counties in the area shown in white (the tested CWA) is considered 

one group and tested against all counties shown in gray (BIS, ABR, MPX, and DLH), the 

second group. The null hypothesis in these tests is that there is no difference between the
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EASTERN NORTH DAKOTA, NORTH DAKOTA
COUNTY WARNING FORECAST AREA

NATIONAL WEATHER SERVICE 
CENTRAL REGIONAC. .Vi*

Figure 12. Eastern North Dakota. ND County Warning Forecast Area (CWA) and 
Surrounding CWAs.

CWA being tested and the group of CWAs surrounding it (Ho: pi = P2). The most 

stringent criteria possible was sought for these tests to reduce the probability' of a Type I 

error so the most extreme alpha requirement to reject the null hypothesis was chosen (a = 

0.01) while attaining a power rating o f at least 0.8 (Agresti and Finlay. 1997). If the test 

determined that the numbers were not different (did not reject the null), then it was 

assumed that the WFO did not issue warnings with a statistically different frequency than 

its neighbors and no adjustment was made. If the test detenu ined that there is a 

difference (null is rejected) then it is concluded that an adjustment is necessary. A 

percentage would be sought to multiply the warning numbers in the tested CWA so that a 

re-test involving the new multiplied numbers would determine that the null could not be
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rejected. The resultant numbers became the finally adjusted number of warnings in each 

county.
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CHAPTER VI

RESULTS

Initial Spatial Distribution Plots

Spatial distributions of the reported severe thunderstorm and tornado events, and 

distributions of severe thunderstorm and tornado warnings are shown in Figures 13-16. 

Although these data encompass a slightly different time period than Figures 1-3 (1986- 

2004 vs. 1980-1999), have a county format rather than the 80 km x 80 km grid format in 

Figures 1-3, and have not been smoothed, they do show similarities. While Figure 13 is a 

composite image representing both severe thunderstorm wind and hail, one must visually 

combine Figures 1 and 2 to compare them. But a broad maximum area is apparent, 

extending from northeast Texas, Kansas and Oklahoma eastward to at least Georgia, and 

northeastward to Ohio. Figure 13 is obviously noisy resulting from the use of a county 

format without adjustments for bias and can be compared to Figures 1 and 2 only in a 

general sense. The largest difference in Figure 13 versus Figures 1 and 2 is more 

reported events in Kansas than farther south into Oklahoma. A comparison of Figures 3 

and 15 is slightly easier. The relative maximum for tornadoes in northeast Colorado and 

the minimum encompassing most of Missouri in Figure 15 are similar to the pattern in 

Figure 3. But there are many other maxima in Figure 15 that likely reflect unadjusted 

differences in reporting procedures and other biases discussed earlier. Some of these 

maxima are near the center of CWAs, such as for Des Moines, Iowa (DMX), Central
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Figure 16. Tornado Warnings per 1.000 km2 (1995-2004).
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Illinois, Illinois (ILX), Nashville, Tennessee (OHX), Jackson, Mississippi (JAN) and 

Houston/Galveston, Texas (HGX).

POD, FAR and CSI Scores

Improvement in verification scores during the 1990s and since commissioning of 

the radars is one of the few quantifiable measures that justify the MAR of the NWS. In 

fact, 89% of the counties in this study showed higher POD scores for severe 

thunderstorm (and tornado) warnings after commissioning the closest radar to each 

county than by using the older radars, and 81% showed lower FAR scores in the later 

period. The overall POD, FAR and CSI scores for the area studied before and after 

commission dates are shown in Table 2. Scores for the later period are certainly an 

improvement over the earlier period. Of course, there is much room for improvement, 

especially regarding false alarms for tornadoes. The greatest progress is with POD, rising 

from 0.429 to 0.711 for tornado warnings. And though it is not shown here, the average 

lead time in these warnings (warning issuance time before the recorded tornado 

touchdown) increased from 6.5 to 11.8 minutes.

Table 2. Verification Scores Before and Since Commissioning the 
Counties’ Closest Radar.

Severe Thunderstorm/Tomado Warnings Tornado Warnings
Before After Before After

POD 0.682 0.842 0.429 0.711
FAR 0.537 0.463 0.751 0.758
CSI 0.381 0.488 0.187 0.220

The MAR was and is an ongoing process of learning how to detect and warn for 

severe local storms and the NWS is continually working to improve identification and 

warning for these storms. Improvement in verification scores during the 1990s was a 

gradual trend, with much of it occurring during the early part of the decade, even before
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1990. and il appears to have reached a plateau in the 2P' Century and even possibly 

decreased then due to a higher FAR (Figures 17 and 18).
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Figure 17. Yearly NWS Verification Scores for Severe Thunderstorm Warnings.
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Figure 18. Yearly NWS Verification Scores for Tornado Warnings.

Figure 19 is a map of POD scores for severe thunderstorm warnings before the 

commission dates (which range from September. 1992 to May, 1998) of the closest radar 

to each county and Figure 20 is the same distribution pertaining to after those dates. FAR

4 4



www.manaraa.com

»

4 -
V.

f i g u r e  19 . P O D  S c o r e s  f o r  S e v e r e  T h u n d e r s to r m  W a r n in g s  B e fo r e  C o m m is s io n  D a te  o f  th e  R a d a r  C lo s e s t  to  th e  C o u n t ie s  S h o w n .



www.manaraa.com

»

4-
0 \

Pacific
Ocean

F ig u r e  2 0 .  P O D  S c o r e s  f o r  S e v e r e  T h u n d e r s to r m  W a r n in g s A f t e r  C o m m is s io n  D a te  o f  th e  R a d a r  C lo s e s t  to  th e  C o u n t i e s  S h o w n .



www.manaraa.com

- u
' -J

F ig u r e  2 1 .  F A R  S c o r e s  l o r  S e v e r e  T h u n d e r s to r m  W a r n in g s  B e f o r e  C o m m i s s i o n  D a le  o f  t h e  R a d a r  C lo s e s t  to  th e  C o u n t ie s  S h o w n .



www.manaraa.com

Atlantic
Ocean

0  tOO 200
Kbrnoter

F ig u r e  2 2 .  F A R  S c o r e s  f o r  S e v e r e  T h u n d e r s to r m  W a r n in g s  A l t e r  Commission D a te  o f  th e  R a d a r  C lo s e s t  to  t h e  C o u n t ie s  Shown.



www.manaraa.com

scores for severe thunderstorm warnings for the same two periods are shown in Figures 

21 and 22.

POD and FAR scores since commission of the radars show impressive overall 

improvement. In particular, both scores improved the most across the north portion 

including Montana, North Dakota, South Dakota, Nebraska, Iowa, Minnesota, Wisconsin 

and Michigan. Other areas of significant improvement include counties where local 

offices are responsible and doing exceptionally well, including Knoxville, Tennessee 

(MRX) and Lake Charles, Louisiana (LCH) and a few offices in south Texas and north 

Florida. Pockets of low POD and high FAR relative to overall trends remained after 

radar commissioning but their causes were not determined.

There are significant large areas where the use of Doppler radar has not helped 

improve scores as much in comparison to earlier radars. Most notably, they are in north 

Texas, Kansas, Oklahoma, and many counties covered by Shreveport, Louisiana (SHV) 

and the Weather Service Office (until 1995) in Evansville, Indiana 

(http://wvvw.crh.noaa.gov/pah/lustory.php). Very good scores were already being 

achieved in those areas before arrival of the Doppler radar. The skill of the people 

issuing warnings and verifying them prior to the WSR-88D era was often times excellent 

and sometimes underestimated; they knew their radars and severe thunderstorms well.

There are other possible factors that contributed to the improved scores in the 

Doppler radar era, beyond the improved perfonnance. As stated earlier, the reported 

events since 1980 increased almost by an order of magnitude. Since it is very likely that 

this number of severe events was also happening prior to MAR, then POD scores before 

1995 were likely artificially high due to many unreported events (since a greater number
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of unwarned events would lower POD). Procedures in a weather office before and after 

the MAR are very different. Improvement in verification scores after the MAR are partly 

due to a more pro-active approach, frequently requiring road trips by meteorologists to 

investigate areas to look for signs of unreported but recent severe weather (such as 

broken tree limbs or crop damage). Verifying meteorologists may also access telephone 

numbers in rural directories and call homes and businesses where people may have 

experienced the severe weather. This remains a rather thorny issue for large areas of the 

nation since unsolicited phone calls sometimes draw anger from the person called. Many 

other offices continue to wait to hear of severe reports from a second hand source.

Before the MAR, parts of the warning process that required more personal attention and 

more time are: 1) composition of the warning message (was less automated); and 2) 

reading of the warnings on NOAA Weather Radio (was done manually versus using 

synthetic voices today).

Regression for Bias in Severe Thunderstorm Warnings

The 75 CWAs were reduced to 49 areas and multiple regression was performed 

for each. With this reduction regression results greatly improved overall, but showed a 

wide variation in scores. Table 3 summarizes the R2 and R2(adj) values of derived 

equations for each area. Satisfactory equations were not found that met the 

predetermined criteria for 13 of the CWA(s) and the numbers for those CWA(s) were left 

unchanged. Among the other 36 areas where valid equations were derived, the mean 

scores were R2 = 0.418 and R2(adj) = 0.383.

Once the equations were derived, the population density and distance from radar 

variables for each county were replaced with a constant. The population density for each
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Table 3. Regression Scores for Identifying Bias in Warnings (# = equation not used).

WFO(s)
Severe Thunderstorm 

Warnings Tornado Warnings

R- R‘(adj) R- R"(adj)
ABQ+BOU+PUB 0.688 0.670 0.330 0.246
ABR 0.334 0.308 0.441 0.397
AMA+LUB 0.404 0.377 0.175 0.156
APX+MQT 0.329 0.291 0.391 0.317
ARX #0.120 #0.087 # 0.079 # 0.005
BIS #0.131 #0.105 0.460 0.444
BMX 0.311 0.297 #0.101 # 0.082
BRO+CRP+EWX 0.200 0.153 0.239 0.225
BYZ+TFX #0.238 #0.174 #0.131 # 0.059
CAE+CHS+GSP+JAX 0.248 0.201 # 0.092 #0.035
CLE # 0.204 #0.112 # 0.046 #0.012
CYS+GGW+UNR 0.437 0.395 0.367 0.320
DDC+GID+GLD+LBF 0.197 0.181 0.119 • 0.111
DLH+GRB 0.451 0.421 0.239 0.219
DMX 0.308 0.294 0.206 0.190
DTX+GRR 0.369 0.335 0.205 0.163
DVN 0.400 0.343 0.224 0.151
EAX 0.680 0.664 # 0.089 # 0.068
FFC 0.592 0.583 0.116 0.107
FGF # 0.066 #0.038 # 0.045 #0.016
FSD 0.357 0.326 0.294 0.260
FWD 0.220 0.202 0.161 0.142
HGX+LCH 0.245 0.189 0.337 0.289

'  ICT+TOP 0.351 0.323 0.201 0.128
ILN #0.103 # 0.067 # 0.060 # 0.022
ILX+LSX 0.490 0.484 # 0.064 # 0.052
IND 0.198 0.153 0.216 0.149
IWX # 0.041 #0.014 # 0.055 # 0.028
JAN 0.313 0.288 # 0.052 # 0.035
JKL+RNK #0.123 # 0.068 # 0.094 # 0.066
LIX+MOB #0.123 #0.106 0.158 0.123
LMK 0.251 0.210 0.167 0.105
LOT+MKX # 0.058 # 0.036 #0.083 #0.061
LZK 0.479 0.454 0.449 0.379
MAF+SJT 0.335 0.291 #0.175 #0.101
MEG # 0.094 # 0.078 # 0.001 # 0.000
MFL+MLB+TBW 0.798 0.759 0.754 0.706
MPX 0.606 0.572 0.373 0.303
MRX #0.167 #0.119 #0.015 # 0.000
OAX 0.711 0.655 0.323 0.192
OHX # 0.077 # 0.030 #0.112 # 0.067
OUN 0.499 0.437 0.334 0.268
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Table 3 (cont.). Regression Scores for Identifying Bias in Warnings 
(# = equation not used).___________________________________

WFO(s)
Severe Thunderstorm 

Warnings Tornado Warnings

R2 R2(adj) R2 R2(adj)
PAH 0.443 0.401 0.168 0.138
PBZ 0.543 0.478 #0.221 #0.110
RLX 0.333 0.269 # 0.075 # 0.054
SGF 0.754 0.731 0.535 0.508
SHV 0.406 0.335 #0.145 #0.126
TAE 0.177 0.140 0.200 0.165
TSA 0.603 0.576 0.349 0.304

county was replaced with a constant value of 44.9 people/km2 and the actual distance 

from radar in each county was replaced with 60 km. Recalculation of the equations with 

constant values for every county resulted in the distribution displayed in Figure 23. 

Differences across many CWA boundaries appear to have been enhanced such as around 

Glasgow, Montana (GGW), Nashville, Tennessee (OHX), Atlanta, Georgia (FFC),

Springfield, Missouri (SGF), Oklahoma City, Oklahoma (OUN), and around the

combined area for Amarillo, TX and Lubbock, TX (which were combined for 

regression). These contrasts should be expected if the two sources of bias have been

removed.

Regression for Bias in Tornado Warnings 

The same regionalization as for the larger data set was performed for tornado 

warnings to improve regression scores. Again the results varied greatly. Table 3 also 

summarizes R2 and R2(adj) values for this subset. No equation was found to pass all 

required tests for 20 of these CWA(s). Equations for the remaining 29 CWA(s) achieved 

mean scores of R2 = 0.294 and R2(adj) = 0.248. Again, once equations were derived the 

population density and distance from radar variables were removed and replaced with the 

same constants as were used for the larger severe thunderstorm warning data. This was
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done for every county for which the equation was derived. Figure 24 shows the 

distribution of tornado warnings after recalculation of the equations for every county. 

Differences across CWA boundaries again appear enhanced for a few areas such as 

Glasgow, Montana (GGW) and Nashville, Tennessee (OHX) but not nearly as often as in 

Figure 23. The tendency for maxima to be near the center of many CWAs noted in 

Figure 16 remains in Figure 24 though it decreased for Houston/Galveston, Texas 

(HGX).

As Figures 25 and 26 show, regression scores vary widely according to CWA(s). 

CWA(s) where valid equations were not found, and presumably no detectable bias was 

present, are shown in white.

T-tests and Mann-Whitney Tests for WFO/CWAs

Differences between CWAs in the number of warnings issued cannot be 

considered a bias since it carries a high level of subjectivity from varied sources such as 

interpretation of radar displays to perception by the user for the meaning of a warning 

and what their response action should be. There is the possibility that an office issuing an 

unusually high or low number of warnings is more correct than all other offices 

surrounding them. But to construct a more meaningful distribution of warnings that may 

be comparable to a distribution of reported events, some adjustment is necessary.

For each CWA, either a t-test or Mann-Whitney test was performed between all 

counties that an office is responsible for in one group and all counties contained within 

all CWAs that share a common border with the CWA being tested in the other group.

The t-test was preferred in all cases, but the Mann-Whitney test was frequently required, 

usually because the constant variance test failed. The input values were those obtained
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Figure 24. Tornado Warnings per 1.000 km2 after Regression and Substitution of Variables for Constants.
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Figure 25. Regression R: Scores for Severe Thunderstorm Warnings.
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after removal of the two sources of bias (population density and distance from nearest 

radar). However, if the CWA does not have other CWAs bordering it on at least three 

sides (within the study area), then no test was performed. The CWAs where no test was 

performed are those for Great Falls, Montana (TFX), Brownsville, Texas (BRO), 

Marquette, Michigan (MQT), North Central Lower Michigan, Michigan (APX), Miami, 

Florida (MFL), Greesnboro/Spartanburg, South Carolina (GSP) and Roanoke, Virginia 

(RNK). In all, 38 t-tests and 98 Mann-Whitney tests determined differences between 

CWAs. Table 4 summarizes the results of these tests with the data set of severe 

thunderstorm warnings and also for the subset of tornado warnings. A ratio multiplier is 

shown for each CWA that when applied to its input warning numbers, would result in the 

null hypothesis (that CWAs are not different) to be marginally accepted in a re-test. A 

ratio multiplier higher than one indicates that more warnings would have had to be issued 

during 1995-2004 in that CWA in order for the total to not be different from those 

associated with neighboring CWAs. The resultant multiplier was applied to the numbers 

of warnings after regression and then recorded as the final adjustment to county warning 

numbers.

Final Analysis Results

Population bias and distance from radar bias were removed through regression 

and differences between CWAs were removed through statistical tests. The resulting 

final spatial distributions are displayed in Figures 27 and 28. Their overall patterns show 

minor changes, with the numbers of warnings increasing relative to Figures 14 and 16. 

The severe thunderstorm warning data set resembles the distribution in Figures 1 and 2

58



www.manaraa.com

Table 4. Results of T-tests and Mann-Whitney Tests. TT=t-test. MW = Mann-Whitney- 
Severe Thunderstorm Warnings______________ Tornado Warnings_______

WFO Test
Fail to 

Reject the 
Null?

Ratio Multiplier 
Required 
to Reject

Test
Fail to 

Reject the 
Null?

Ratio Multiplier 
Required 
to Reject

ABQ TT N 1.37 MW N 1.78
ABR MW Y 1.00 MW Y 1.00
AMA MW N 1.23 MW N 1.00
APX N/A N/A
ARX MW N 1.15 MW N 1.30
BIS MW N 1.60 MW N 1.40

BMX MW N 1.09 MW N 0.97
BOU MW Y 1.00 TT Y 1.00
BRO N/A N/A
BYZ MW N 1.98 MW N 1.79
CAE TT Y 1.00 MW Y 1.00
CHS TT N 1.25 MW Y 1.00
CLE TT Y 1.00 MW N 0.53
CRP TT N 1.15 MW Y 1.00
CYS TT Y 1.00 TT Y 1.00
DDC MW N 0.97 MW Y 1.00
DLH TT N 1.05 MW Y 1.00
DMX MW N 1.03 MW Y 1.00
DTX MW Y 1.00 MW Y 1.00
DVN MW N 1.02 MW Y 1.00
EAX MW Y 1.00 TT N 1.81
EWX MW N 1.25 MW N 1.28
FFC MW N 0.72 TT N 1.10
FGF MW Y 1.00 MW Y 1.00
FSD MW N 0.90 TT Y 1.00
FWD MW N 1.03 MW N 1.30
GGW MW Y 1.00 TT Y 1.00
GID MW Y 1.00 TT Y 1.00
GLD MW Y 1.00 TT Y 1.00
GRB TT Y 1.00 MW Y 1.00
GRR MW Y 1.00 TT Y 1.00
GSP N/A
HGX TT Y 1.00 MW N 0.54
ICT MW N 1.03 TT Y 1.00
ILN MW Y 1.00 MW N 1.34
I LX TT N 1.00 MW N 0.61
IND MW N 1.21 MW Y 1.00
1WX MW Y 1.00 MW Y 1.00
JAN MW N 0.63 MW N 0.67
JAX MW Y 1.00 TT Y 1.00
JKL MW Y 1.00 MW Y 1.00
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Table 4 (cont.). Results of T-tests and Mann-Whitney Tests. TT = t-test. 
MW = Mann-Whitney.

Severe Thunderstorm Warnings______________ Tornado Warnings

WFO Test
Fail to 

Reject the 
Null?

Ratio Multiplier 
Required to 

Reject
Test

Fail to 
Reject the 

Null?

Ratio Multiplier 
Required to Reject

LBF TT Y 1.00 TT Y 1.00
LCH MW N 1.53 MW N 1.13
L1X TT Y 1.00 TT Y 1.00

LMK TT Y 1.00 TT Y 1.00
LOT TT Y 1.00 MW N 1.04
LSX MW Y 1.00 MW Y 1.00
LUB MW Y 1.00 MW N 1.11
LZK TT Y 1.00 TT Y 1.00
MAF MW N 0.97 MW N 0.76
MEG MW N 1.37 MW N 1.20
MFL N/A N/A «
MKX TT Y 1.00 MW Y 1.00
MLB TT Y 1.00 TT Y 1.00
MOB TT Y 1.00 TT Y 1.00
MPX MW N 0.94 TT Y 1.00
MQT N/A N/A
MRX TT Y 1.00 MW N 1.02
OAX TT Y 1.00 TT Y 1.00
OHX MW N 0.62 MW N 0.55
OUN MW N 0.86 MW N 0.95
PAH TT Y 1.00 MW Y 1.00
■PBZ TT Y 1.00 MW N 1.29
PUB TT Y 1.00 MW Y 1.00
RNK N/A N/A
RLX MW N 1.54 TT Y 1.00
SGF MW N 0.88 TT Y 1.00
SHV MW N 1.15 MW N 1.64
SJT TT Y 1.00 MW N 0.54
TAE MW N 2.02 TT Y 1.00
TBW MW N 0.90 TT Y 1.00
TFX N/A N/A
TOP MW N 0.96 TT Y 1.00
TSA MW N 0.75 TT N 0.82
UNR MW Y 1.00 TT Y 1.00
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except for higher numbers but the tornado warning data subset (Figure 28) continues to 

look very different from reported events (Figure 3).

After all adjustments, the data set containing severe thunderstorm warnings 

appears comparable to the one based on recorded events alone. In Figure 27 there is an 

overall maximum of warnings issued over eastern Oklahoma, Arkansas and extending 

into southeast Kansas, and another maximum for eastern Tennessee and extending 

towards Atlanta, Georgia. In addition, there is a ridge of high values extending from 

Kentucky towards western Pennsylvania. These features are similar to those in Figures 

1 and 2 except those figures based on events reach farther into north Texas. However, 

reported events in the 1995-2004 period (Figure 13) were higher in Kansas than areas 

farther south so the difference is valid. This distribution of severe thunderstorm warnings 

adds validation to climatologies based on reported events and suggests that hazard risk 

from these storms has been well identified.

The data set with only tornado warnings, even with biases from population 

density and distance from radar removed, does not compare as well to actual events. 

Though the minimum of issued warnings in Figure 28 exists in Missouri as in Figure 3, 

little else compare favorably between these figures. Figure 28 shows major maxima in 

southern Mississippi, northeast Arkansas, near the Alabama-Georgia-Florida tri-state 

region, around Jacksonville, Florida, and generally much higher than would be expected 

in South Dakota and southern Minnesota. None of these findings are indicated in Figure 

3.
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What About the Remaining Significant Differences 
Between Tornado Reports and Tornado Warnings?

A remaining question is whether the shift from highest reported tornado 

occurrences on the central and southern plains to a high number of tornado warnings in 

and near Mississippi and Alabama is a product of under-warning on the plains, or over- 

warning in Mississippi-Alabama? Or, do more tornadoes actually occur in those states 

farther east? The high density of trees along with the very low clouds associated with 

thunderstorm across the Mid-South may cause visual sightings to be much more difficult 

than on the treeless Great Plains, and densely wooded areas may escape easily noticeable 

damage from weak tornadoes.

To further address this issue, FAR scores for tornado warnings alone were 

obtained for the 1995-2004 period and their distribution are shown in Figure 29. This 

image is rather noisy and difficult to assess, so the neighborhood statistic option in 

ArcView GIS was utilized. This tool computes an output grid in which the value at each 

'  location is a function of the input cells within a specified neighborhood of the location. 

For this image settings were set at 10 units in a radius around data points to produce 

Figure 30. This essentially smoothed the data and shows that false alarms are 

dramatically higher over the eastern portion of the region. Such high FAR covering the 

east leads to low confidence in the shift of high tornado frequency in that direction 

relative to the distribution of tornado events (Figures 3 and 15 vs. Figures 16 and 28). 

Notice that FAR rises quite rapidly east of the boundary between the Plains and the more 

forested areas of Minnesota, extreme eastern Iowa and southern Missouri.
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Figure 29. FAR Scores for Tornado Warnings (1995-2004).
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Figure 30. Neighborhood Statistics Modification of FAR Scores (1995-2004)
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CHAPTER VII

REGRESSION TRENDS AND DISCUSSION 

Table 5 shows the tendencies that each WFO/CWA or combination of offices had 

for issuing warnings as a function of population density and distance to radar station. A 

plus (minus) indicates that as the variable increased (decreased) there was a trend to issue 

more (fewer) warnings.

Table 5. Tendencies of WFO/CWA to Issue Warnings with Increasing Values in the 
Independent Variables.

WFO(s) Severe Thunderstorm Tornado
Population Density Distance Population Density Distance

ABQ+BOU+PUB + 0 + -
ABR + 0 + -

AMA+LUB + - 0 -

APX+MQT + - + -
ARX 0 0 0 0
BIS 0 0 0 -

BMX + 0 0 0
BRO+CRP+EWX + 0 + 0
BYZ+TFX 0 0 0 0
CAE+CHS+GSP+JAX + 0 0 0
CLE 0 0 0 0
CYS+GGW+UNR + + + +
DDC+GID+GLD+LBF + + + 0
DLH+GRB + - + 0
DMX + 0 + 0
DTX+GRR + - + -

DVN + + + +
EAX + 0 0 0
FFC + + + 0
FGF 0 0 0 0
FSD - 0 - 0
FWD + 0 + 0
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Table 5 (cont.). Tendencies o f  W FO /CW A  to issue w arnings w ith increasing values in 
______ the independent variables.__________________________________

W FO(s) SevereThunderstorm Tornado
Population Density D istance Population D ensity Distance

HG X+LCH + + + +
ICT+TOP + 0 + -

ILN 0 0 0 0
ILX +LSX + 0 0 0
IND + 0 + +
IW X 0 0 0 0
JA N + - 0 0
JK L+R N K 0 0 0 0
LIX+M OB 0 0 + -

LM K + 0 + -

LO T+M K X 0 0 0 0
LZK + 0 + -

M A F+SJT + 0 0 0
M EG 0 0 0 0
M FL+M LB+TB W + - + +
M PX + 0 + -

M RX 0 0 0 0
OAX - - - -

O H X 0 0 0 0
OUN + - - -

PAH - - 0 +
PBZ + - 0 0
RLX - - 0 0
SGF + - 0 +
SHV + - 0 0
TAE 0 - 0 -

TSA + - + -

In most cases for severe thunderstorm warnings (31 out of 35) when a trend was 

detected, increasing values of population density suggest that more warnings would be 

predicted (positive correlation), while increasing distance values usually (15 out of 20) 

result in fewer predicted warnings (negative correlation).

For the tornado warnings, 21 out of 24 areas indicated that increasing population 

density would result in more predicted warnings (positive correlation), while increasing
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distance values usually (15 out of 22) result in fewer predicted warnings (negative 

correlation.

Both data sets show that the unintended tendency of most warning meteorologists 

is to issue warnings more often when population density is high and the storm is close to 

the radar. The warning has a higher likelihood of verifying where population is higher 

which increases the meteorologist’s confidence in issuing it. Meanwhile he or she is 

usually more confident about issuing one when the storm is relatively close to the radar 

since more information from the radar about the storm is then available. But a minority 

of meteorologists apparently issue warnings more often when in doubt of the conditions, 

a better safe than sorry viewpoint. Lower population density (and thus fewer spotters 

giving ground truth reports) and lower vertical and horizontal resolutions available at 

greater distance from the radar transmitter lead to such doubt.

There are a few areas where this form of regression was not effective in 

identifying bias, and no equation was found to satisfy the criteria set forth. The area 

including WFOs at Billings, Montana and Great Falls, Montana is one such location.

The population density in these CWAs is highest in the western portion of their counties, 

yet a higher number of severe thunderstorms and tornadoes typically occur in their 

eastern counties due to higher moisture availability and the presence of fewer mountains 

to disrupt the supporting wind flow patterns to develop storms. Higher population 

density seems to imply fewer warnings issued for this area, which is reflected in the 

equations derived. But the reasoning is faulty; more events and warnings actually do 

occur in their eastern counties where population density is lower.
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The area containing the Chicago, Illinois (LOT) and Milwaukee, Wisconsin 

(MKX) metroplexes and the large population along the Lake Michigan shore between the 

two, probably experience fewer severe storms than farther inland due to their proximity 

to Lake Michigan. It is a false conclusion (as shown in the regression equations for both 

data sets) that higher population near the lake results in fewer warnings. It is not a bias, 

but a real occurrence with an underlying physical reason.

A comparison of the warnings distributions after regression was applied (Figures 

23 and 24) shows that bias correction does not significantly alter the pattern from those 

noted in Figures 14 and 16, although the numbers do increase. Table 6 compares the 

gross number of warnings issued to the hypothetical number with little or no bias. These 

numbers were derived by multiplying the values after regression by the county areas, 

dividing by 1,000, and adding all county values, which is the reverse procedure of 

producing the original dependent variables. Regression suggests that without the two 

sources of bias there would be an approximate 16% increase in warnings issued in both 

data sets. But these are very likely low estimates of how many warnings should be issued 

since: 1) only 44.9 people/km2 was used as a constant in the equations, and 2) warnings 

tend to continue to increase with higher population density (Fig. 9 and 10).

Table 6. Actual Warnings Issued and Hypothetical Warnings after 
Regression (1995-2004).

Issued After Regression

Severe Thunderstorm Warnings 244,400 282,741

Tornado Warnings 30,639 35,507

One possible area of bias for tornado warnings that w'as not included for 

regression in this study is that of ground effects. Pryor and Kurzhal (1993) found in 

regression that surface roughness is a significant predictor (after county size and county
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population) of the number of reported tornadoes in Indiana. They concluded that high 

surface roughness played a role in fewer reported tornadoes over southwest Indiana 

which correlates in Figure 30 to a relative maximum of FAR over the same area of that 

state. They also concluded that surface roughness explained 6% of the variance of 

tornado reports during their period of study.

Warning meteorologists do not usually account for this variable when considering 

whether a tornado might reach the ground. Atmospheric conditions favorable for tornado 

development and a radar signature indicating a tornado vortex usually cause enough 

concern to issue a warning. But forest and/or rugged terrain causing friction for low- 

level winds may be a significant factor in decreasing the chance of a developing tornado 

from reaching the surface. Table 7 show's a ratio of issued tornado warnings to reported 

tornadoes within the study area. Though there are some highly forested states that have 

low ratios, the 11 states that have ratios of 3.0 or higher are eastern states having forest 

covering a high percentage of their land. This west-east gradient is a new trend as ratios 

during 1986-1994 were much more random. But as the Assistant Administrator for 

Weather Services pointed out tornado warnings before Doppler radar were usually issued 

only after visual sightings of tornadoes were received and not necessarily based on radar 

interpretation.

Table 7. Ratio of Issued Tornado Warnings to Reported Tornadoes in the Area of Study,
by State (1995-2004).

Alabama 4.3 Kansas 1.7 Montana 2.1 South Dakota 1.9
Arkansas 2.0 Kentucky 3.3 Nebraska 2.6 Tennessee 4.9
Colorado 2.0 Louisiana 3.0 New Mexico 2.4 Texas 2.2
Florida 2.1 Michigan 2.1 North Dakota 1.5 Virginia 7.0
Georgia 4.4 Minnesota 2.2 Ohio 3.2 West Virginia 5.4
Illinois 2.5 Mississippi 4.5 Oklahoma 2.3 Wisconsin 2.5
Indiana 3.0 Missouri 3.0 Pennsylvania 2.1 Wyoming 1.9
Iowa 2.1
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Pryor and Kurzhal (1993) obtained the amount of land use in each category from 

the U. S. Geological Survey, multiplied each amount by the natural logarithm of the 

assigned roughness and then aggregated to arrive at an average value in each Indiana 

county. This would be quite labor intensive if done for the counties of this study, but 

would likely be worth the time in future efforts.
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CHAPTER VIII

CONCLUSIONS

The regression trends seen in this study are prevalent enough to conclude that 

during the 1995-2004 period, at most WFOs population density continued to be a 

significant bias for radar meteorologists to deal with, and distance from radar was a 

significant bias at almost half of the WFOs. These biases were much stronger in some 

parts of the nation; however, the magnitude of each source of bias at the WFOs was not 

obtainable through this method.

To answer the first research question about possible bias associated with 

population density or distance from radar, regression indicated that population density 

was a significant predictor for where severe thunderstorm warnings were issued in 71% 

of the 49 areas studied, and for tornado warnings in 59%. Bias for distance from radar 

was slightly less prevalent, being a significant predictor for 49% of the areas issuing 

severe thunderstorm warnings and for 45% issuing tornado warnings.

The second primary question to answer regarded whether counties in individual 

CWAs show significant differences as compared to counties in their neighboring CWAs. 

T-tests and Mann-Whitney tests indicated that for severe thunderstorm warnings, 31 out 

of 68 CWAs were significantly different, 13 of those by greater than 20%. For tornado 

warnings, 26 out of 68 CWAs showed differences, 14 of them by more than 20%. But 

these differences could not be considered a bias since there is too much subjectivity 

involved to determine how many warnings is a correct number to issue.
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The spatial pattern of severe weather was examined and compared to earlier 

climatology. The distribution of severe thunderstorms warnings, after removal of bias 

and differences between CWAs, compared well with a distribution of reported events.

But the pattern of tornado warnings differed much from events, with several probable 

causes. Subjectivity in the decision to issue a tornado warning is greater than for a severe 

thunderstorm warning and the processes which cause an existing tornado vortex in a 

thunderstorm to reach the ground are poorly understood. Yet the warning meteorologist 

cannot wait for the funnel cloud or tornado to be spotted and reported to issue a warning. 

As a result false alarms continue too high, especially in the east, to consider a spatial 

distribution of tornado w arnings to be highly valued for use in hazard risk assessment. 

More conventional studies of reported tornadoes currently paint a more likely picture of 

where the greater threats are.

More research is needed on w'hy false alarms are so prevalent in tornado 

warnings. Most current efforts are directed at what can be determined from radar images 

or from atmospheric conditions. Surface roughness may be a very significant factor to 

explain why many thunderstorms that look tomadic on radar do not result in tornadoes 

reaching the ground, especially in those thunderstorms where the support for developing 

funnel clouds and tornadoes are weak. Dessens (1972) showed how decreasing vertical 

wind shear increased turbulence in the low'est layer which may keep a funnel cloud from 

dipping to the surface. But other factors complicate the matter and must be considered, 

such as whether these warnings are simply harder to verify in the east due to trees, hills, 

rain or low clouds which sometimes obscure the view of a tornado.
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Future study might do well to look further at what impact frictional effects have 

on these phenomena. It is possible that inclusion of surface roughness in regression as 

Pryor and Kurzhal (1993) did would improve the distribution of the tornado warnings in 

this study. If it were, any percentage of warnings that regression would identify as 

explainable by surface effects might simply be removed from the warning totals since 

these would represent false alarm warnings.
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APPENDIX A

WFO STATION ID LIST

ABQ - Albuquerque, NM 
ABR - Aberdeen, SD 
AMA - Amarillo, TX
APX - North Central Lower Michigan, Ml
ARX - La Crosse, Wl
BIS - Bismarck, ND
BMX - Birmingham, AL
BOU - Denver/Boulder, CO
BRO - Brownsville, TX
BYZ - Billings, MT
CAE - Columbia, SC
CHS - Charleston, SC
CLE - Cleveland, OH
CRP - Corpus Chnsti, TX
CYS - Cheyenne, WY
DDC - Dodge City, KS
DLH - Duluth, MN
DMX - Des Moines, IA
DTX - Detroit, Ml
DVN - Quad Cities, IA
EAX - Kansas City/Pleasant Hill, MO
EWX - Austin/San Antonio, TX
FFC - Atlanta, GA
FGF - Eastern North Dakota, ND
FSD - Sioux Falls, SD
FWD - Dallas/Fort Worth, TX
GGW - Glasgow, MT
GID - Hastings, NE
GLD - Good land, KS
GRB - Green Bay, Wl
GRR - Grand Rapids, Ml
GSP - Greenville/Spartanburg, SC
HGX - Houston/Galveston, TX
HUN-Huntsville, AL
ICT - Wichita, KS
ILN - Cincinnati, OH
ILX - Central Illinois, IL
IND - Indianapolis, IN

IWX - Northern Indiana, IN
JAN - Jackson, MS
JAX - Jacksonville, FL
JKL - Jackson, KY
LBF - North Platte, NE
LCH - Lake Charles, LA
LIX - New Orleans/Baton Rouge, LA
LMK - Louisville, KY
LOT - Chicago, IL
LSX - St. Louis, MO
LUB - Lubbock, TX
LZK - Little Rock, AR
MAF - Midland/Odessa, TX
MEG - Memphis, TN
MFL - Miami, FL
MKX - Milwaukee, Wl
MLB - Melbourne, FL
MOB - Mobile, AL
MPX - Minneapolis, MN
MQT - Marquette, Ml
MRX - Knoxville/Tri-Cities, TN
OAX - Omaha, NE
OHX - Nashville, TN
OUN - Oklahoma City, OK
PAH - Paducah, KY
PBZ - Pittsburgh, PA
PUB - Pueblo, CO
RLX - Charleston, WV
RNK - Roanoke, WV
SGF - Springfield, MO
SHV - Shreveport, LA
SJT - San Angelo, TX
TAE - Tallahassee, FL
TBW - Tampa Bay Area, FL
TFX - Great Falls, MT
TOP - Topeka, KS
TSA - Tulsa, OK
UNR - Rapid City, SD
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A P P E N D I X  B

EQUATION LIST

Regression Equations Derived for Severe Thunderstorm Warnings and Tornado Warnings, F test results and power rating. 
x=population density, y=distance from radar. #=cquation not used in recalculation for spatial distribution._______________

WFO(s) n Equation
First Six Coefficients (to nearest hundredth) Constant F test Pwr

value a b d c f g c
ABQ+BOU+PUB 37 a*xb+c 0.08 0.71 5.31 F(2,34)=37.47p<0.0l 1.00
ABR 28 a*ln(x)+b 0.47 5.77 F(l,26)=13.02p<0.0l 0.91
AMA+LUB 47 a*ln(x)+b*y+c 0.39 -0.01 6.81 F(2,44)= 14.91 p<0.01 1.00
APX+MQT 38 a*ln(x)+b*y+c 0.44 -0.01 4.00 F2,35)=8.576 p<0.0l 0.97
ARX 28 # a*x+c 0.01 6.08 F(l,26)=3.56 p=0.07 0.44
BIS 36 # a*x+c 0.00 5.00 F(l,34)=5.l 1 p=0.03 0.59
BMX 49 a*x+c 0.01 2.13 F(l,34)=28.92 p<0.0l 1.00
BRO+CRP+EWX 56 a*x3+b*x2+d*x+e 0.00 -0.00 0.03 5.14 F(3,52)=4.32 p<0.0l 0.94
BYZ+TFX 27 # a*ln(x)+b*y+c -0.25 -0.01 4.82 F(2,24)=3.75 p=0.04 0.74
CAE+CHS+GSP+JAX 52 a*x3+b*x2+d*x+c 0.00 -0.00 0.05 7.37 F(3,48)=5.27 p<0.01 0.97
CLE 30 # a*x7+b*x6+d*x5+c -0.00 0.00 -0.00 8.74 F(3,26)=2.22 p=0.l 1 0.72
CYS+GGW+UNR 44 a*xb+d*ln(y)+c 2.54 0.26 0.44 0.31 F(3,40)= 10.36 p<0.01 1.00
DDC+GID+GLD+LBF 102 a*ln(x)+b*In(y)+c 0.41 0.00 7.44 F(2,99)= 12.14 p<0.01 1.00
DLH+GRB 40 a*ln(x)+b*y+c 0.57 -0.01 4.64 F(2,37)= 15.17 p<0.01 1.00
DMX 51 a*x+c 0.01 6.73 F( 1,49)=21.80 p<0.01 0.99
DTX+GRR 40 a*ln(x)+b*ln(y)+c 0.65 -0.73 6.64 F(2,37)= 10.82 p<0.01 0.99
DVN 36 a*x+b*y2+d*y+c 0.01 -0.00 0.02 5.81 F(3,32)=7.01 p<0.0l 0.99
EAX 44 a*xb+c 2.07 0.23 3.55 F(2,41)=43.78 p<0.01 1.00
FFC 96 a*ln(x)+b*y+c 1.07 -0.01 6.60 F(2,93)=67.37 p<0.01 1.00
FGF 35 # a*ln(y)+c 0.38 4.13 F(l,33)=2.32 p=O.I4 0.32
FSD 45 a*x2+b*x+c -0.00 0.16 6.51 F(2,42)=l 1.64 p<0.0l 0.99
FWD 46 a*ln(x)+c 0.53 5.81 F( 1,44)=12.38 p=0.0l 0.92
HGX+LCH 45 a*ln(x)+b*y2+d*y+c 0.54 -0.00 0.04 3.69 F(3,41)=4.43 p<0.01 0.94
ICT+TOP 49 a*x2ib*x+c -0.00 0.05 7.71 F(2,46)= 12.48 p<0.01 1.00
ILN 52 # a*ln(x)+b*ln(y)+c 0.34 0.43 5.45 F(2,49)=2.828 p=0.69 0.65
IL.X+LSX 81 a*x+b 0.00 1.85 F( 1,79)=75.92 p<0.01 1.00
IND 39 a*xb+c 0.15 0.41 6.80 F(2,36)=4.43 p=0.02 0.82
IWX 37 # a*ln(y)+c -0.43 10.05 F( 1,35)= 1.51 p=0.23 0.22
JAN 58 a*ln(x)+b*ln(y)+c 0.86 -0.98 12.63 F(2.55)= 12.53 p<0.01 1.00
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(Cont.) Regression Equations Derived for Severe Thunderstorm Warnings and Tornado Warnings, F test results and power rating, x-population density,
y=distance from radar. #=equation not used in recalculations for spatial distribution.

WFO(s) n Equation First Six Coefficients (to nearest hundredth) Constant F test Pwr
value a b d c f g c

JKL+RNK 36 I t a*ln(x)+b*ln(y)+c -0.88 -1.11 16.55 F(2,32)=2.24 p=0.12 0.54
LIX+MOB 51 I t  a*ln(x)+b 0.53 7.53 F( 1,49)=6.90 p=0.01 0.72
LMK 59 a*x3+b*x^d*x+c 0.00 -0.00 0.03 8.30 F(3,55)=6.14 p<0.01 0.99
LOT+MKX 43 I I a*x+c -0.00 7.35 F( 1,41 >=2.55 p=0.12 0.35
LZK 45 a*x2+b*x+c -0.00 0.05 8.14 F(2,42)= 19.27 p<0.0l 1.00
MAF+SJT 50 a*x3+b*x2+c*x' d 0.00 -0.02 0.44 5.28 F(3,46)=7.71 p<0.01 1.00
MEG 56 U a*ln(x)+b 0.55 6.30 F(l,54)=5.63 p=0.02 0.64
MEG 56 I t  a*ln(x)+b 0.55 6.30 F(l,54)=5.63 p=0.02 0.64
MFL+MLB+TBW 32 a*x2+b*x+d*y3+

e*y2+f*y+g
-0.00 0.01 0.00 -0.00 0.09 3.66 F(5,26)=20.50 p<0.01 1.00

MPX 51 a*x4+b*x3+d*x2+
e*x+c

-0.00 0.00 -0.00 0.04 6.31 F(4,46)= 17.70 p<0.01 1.00

MRX 38 U  a*x2+b*x+c -0.00 0.03 9.18 F(2,35)=17.75 p=0.04 0.73
OAX 38 a*x5+ b V + d * x 3+

e*x2+Px+g*y+c
0.00 -0.00 0.00 -0.01 0.31 -0.01 8.05 F(6,31)= 12.69 p<0.01 1.00

OHX 42 # a*ln(x)+b*y+c 0.35 -0.01 11.02 F(2,39)=1.63 p=0.21 0.43
OUN 56 a*x3+b*x2+d*x+e*y3+

f*y2+g*y+c
0.00 -0.00 0.02 -0.00 0.00 -0.01 10.03 F(6,49)=8.I3 p<0.01 1.00

PAH 58 a*x2+b*x+d*y2+e*y+c 0.00 -0.01 0.00 -0.03 10.88 F(4,53)=10.56 p<0.01 1.00
PBZ 33 a*x3+b*x2+d*y2+

e*y+c
0.00 -0.00 -0.00 0.00 0.01 F(4,28)=8.32 p<0.01 1.00

REX 46 a*x3+b*x +d*x+e*y+c 0.00 -0.00 0.07 -0.01 6.43 F(4,42)=5.24 p=0.02 0.99
SGF 37 a*x2+b*x+d*y+c -0.00 0.03 -0.02 10.73 F(3,33)=33.69 p<0.01 1.00
SHV 48 a*x4+b*x3+d*x2+e*x+

f*y+c
-0.00 0.00 -0.01 0.21 -0.01 6.17 F(5,42)=5.74 p<0.0l 1.00

TAE 48 a*y2+b*y+c -0.00 0.01 6.58 F(2,45)=4.84 p=0.01 0.85
TSA 32 a*x+b*y+c 0.01 -0.02 11.82 F(2,29)=22.07 p<0.01 1.00
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A P P E N D I X  B  ( C O N T . )

EQUATION LIST

Regression Equations Derived for Tornado Warnings, F test results and power rating.
x=population density, y=distance from radar. #=cquation not used in recalculation for spatial distribution.

WFO (s) n Equation First Six Coefficients (to nearest hundredth) Constant F test Power
value a b d c f  g c

ABQ+BOU+PUB 37 a*x+b*y3+c*y2-t d*y+c 0.00 -0.00 0.00 -0.01 1.92 F(4,32)=3.94 p=0.01 0.97
ABR 28 a*ln(x)+b*y+c 0.35 -0.00 2.01 F(2,25)=9.87 p<0.0l 0.98
AMA+LUB 47 a*x+c -0.01 2.76 F(l,45)=9.53 p<0.01 0.84
APX+MQT 38 a*x3+b*x2+d*x+e*y+c 0.00 -0.01 0.20 -0.00 0.39 F(4,33)=5.29 p<0.01 0.99
ARX 28 # a*ln(x)+b*ln(y)+c 0.35 0.27 -0.09 F(2,25)=1.07 p=0.36 0.30
BIS 36 a*x+c 0 .0 1 2.13 F(I,34)=28.92 p<0.01 1.00
BMX 49 f f a*x+c 0.00 3.92 F( 1,47)=5.29 p=0.03 0.61
BRO+CRP+EWX 56 a*In(x)+b 0.18 1.61 F( 1,54)= 16.96 p<0.01 0.97
BYZ+TFX 27 f t a*x2+b*x+c 0.01 -0.12 0.87 F(2,24)=l .81 p=0.19 0.46
CAE+CHS+GSP+JAX 52 # a*x3+b*x2+d*x+c 0.00 -0.00 0.01 2.82 F(3,48)=1.62 p=0.20 0.59
CLE 30 f f a*x+c -0.00 3.04 F( 1,28)= 1.34 p=0.26 0.20
CYS+GGW+UNR 44 a*xb+d*ln(y)+c 1.65 0.20 0.33 -1.75 F(3,40)=7.74 p<0.01 0.99
DDC+GID+GLDhLBF 102 a*ln(x)+b 0.23 2.47 F( 1,100)= 13.56 p<0.01 0.95
DLH+GRB 40 a*In(x)+b 0.24 0.80 F( 1,38)= 11.94 p=0.0l 0.90
DMX 51 a*ln(x)+b 0.42 1.64 F( 1,49)= 12.70 p<0.01 0.92
DTX+GRR 40 a*ln(x)+b*z+c 0.26 -0.00 0.87 F(2,37)=4.78 p=0.01 0.85
DVN 36 a*x+b*y2+d*y+c 0.00 -0.00 0.02 2.28 F(3,32)=3.08 p=0.04 0.84
EAX 44 f f  a*ln(x)+b 0.13 1.88 F( 1,42)=4.12 p=0.05 0.51
FFC 96 a*ln(x)+b 0.25 1.59 F (l,94)= 12.37 p<0.01 0.93
FGF 35 t f  a*x+b 0.02 1.90 F( 1.33)= 1.54 p=0.22 0.23
FSD 45 a*x2+b*x+c -0.00 0.09 1.92 F(2,42)=8.74 p<0.01 0.98
FWD 46 a*ln(x)+c 0.17 1.54 F(l,44)=8.46 p<0.01 0.80
HGX+LCH 45 a*ln(x)+b*y2+d*y+c 0.39 -0.00 0.03 0.20 F(3,41)=6.96 p<0.01 0.99
1CT+TOP 49 a*x2+b*x+d*y5+c*z3+c -0.00 0.02 0.00 -0.00 2.89 F(4,44)=2.77 p=0.04 0.91
ILN 52 i t  a*ln(x)+b*ln(y)+c 0.06 -0.18 2.53 F(2,49)=1.57p=0.22 0.42
ILX+LSX 81 U  a*ln(x)+b 0.20 * 3.02 F(l,79)=5.39 p=0.02 0.63
IND 39 a*ln(x)+b*zc+d 0.25 0.00 2.99 1.71 F(3,35)=3.2I p=0.04 0.86
IWX 37 I f  a*ln(y)+c -0.35 4.13 F(l,35)=2.05 p=0.16 0.29
JAN 58 H  a*x+c 0.01 3.95 F(l,56)=3.07 p=0.08 0.41
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(Cont.) Regression Equations Derived for Tornado Warnings, F test results and power rating. 
x=population density. y=distance from radar, ^eq u a tio n  not used in recalculation for spatial distribution.

WFO (s) n Equation First Six Coefficients (to nearest hundredth) Constant F lest Power
value a b d e f  g c

JKL+RNK 36 # a*ln(y)+c -0.43 4.49 F(1,33)=3.4I p=0.07 0.43
LIX+MOB 51 a*ln(x)+b*ln(y)+c 0.33 -0.24 3.57 F(2,48)=4.52 p=0.02 0.83
LOT+MKX 43 # a*ln(x)+b -0.15 2.96 F( 1,41 )=3.72 p=0.06 0.47
MAF+SJT 50 # a*x3+b*x2+d*x+ 

e*ln(y)+c
0.00 -0.01 0.20 -0.26 3.18 F(4,45)=2.38 p=0.07 0.86

MEG 56 # a*ln(x)+b*ln(y)+c 0.09 -0.05 2.58 F(2,53)=0.16 p=0.85 0.08
MFL+MLB+TBW 32 a*x2+b*x+d*y3+e*y2+

f»y+C
-0.00 0.00 0.00 -0.00 0.04 1.49 F(5,26)= 15.92 p<0.0l 1.00

MPX 51 a*x4+b*x3+d*x2+e*x+
Py+c

-0.00 0.00 -0.00 0.03 -0.00 2.41 F(5,45)=5.35 p<0.0l 1.00

0.11MRX 38 # a*ln(x)+b*ln(y)+c 
a*x5+b*x4+d*x3+e*x2+

-0.08 0.00 2.69 F(2,35)=0.27 p-0.77
OAX 38 0.00 -0.00 0.00 -0.01 0.19 -0.27 3.77 F(6,31)=2.46 p=0.05 0.97

Px+g*In(y)+c
0.59OHX 42 U  a*ln(x)+b*ln(y)+c 

a*x4+b*x3+d*x2+e*x+
0.24 -0.37 5.35 F(2,39)=2.47 p=0.l0

OUN 56 -0.00 0.00 -0.00 0.05 -0.01 3.23 F(5,50)=5.03 p<0.01 1.00
Py+c

PAH 58 a*y2+b*y+c -0.00 0.01 2.99 F(2,55)=5.57 p<0.0l 0.90
PBZ 33 U  a*x4+b*x3+d*x2+e*x+c 0.00 -0.00 0.00 -0.05 2.07 F(4,28)=l .99 p=0.12 0.80
KLX 46 f t  a*y+c -0.01 1.89 F( 1,45)^3.63 p=0.06 0.46
SGF 37 a*y2+b*z+c -0.00 0.01 2.68 F(2,34)= 19.57 p<0.01 1.00
SHV 48 # a*ln(y)+c -0.37 3.85 F(l,46)=7.78 p<0.01 0.77
TAE 48 a*y2+b*y+c -0.00 0.02 2.69 F(2,45)=5.64 p<0.0l 0.90
TSA 32 a*x+b*y+c 0.00 -0.01 4.11 F(2,29)=7.76 p<0.0l 0.96
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